*** Chromosomowo-Genowa Teoria Dziedziczności ***

Kiedy mówimy “ta cecha charakteryzuje wszystkich członków rodziny” albo “ona ma oczy matki” odnosimy się do zjawiska dziedziczności, czy mówiąc żargonem naukowym – genetyki – nauki o genach. Podstawowe prawa dziedziczności sformułował G.Mendel, którego uważa się za twórcę nauki o dziedziczności czyli genetyki, stwierdził on, że poszczególne właściwości zależne są od specjalnych czynników dziedzicznych, nazywanych później genami; przy powstawaniu komórek płciowych, gamet, geny ulegają segregacji i z połączenia się gamet w procesie zapłodnienia powstają osobniki o różnych kombinacjach genów ojcowskich i matczynych.

Gen jest podstawową jednostką dziedziczenia, zlokalizowana w chromosomach, decydująca o przekazywaniu cech potomstwu. Gen jest odcinkiem łańcucha DNA, zawierający pewną liczbę nukleotydów, których sekwencja stanowi informację genetyczną, warunkującą syntezę określonych białek lub cząsteczek kwasu RNA, co w dalszej konsekwencji w toku skomplikowanych ciągów reakcji prowadzi do wykształcenia określonych cech organizmu. Chyba najlepsza definicja genów określa je jako biochemiczne kody znajdujące się w chromosomach. Chromosomy stałe składniki jąder komórkowych, nosiciele czynników dziedzicznych-genów; zdolne do samoodtwarzania się i zachowania swych właściwości poprzez kolejne podziały komórki. Komórka każdego człowieka ma 46 chromosomów, ułożonych w pary, przy czym jeden chromosom z każdej pary pochodzi od ojca, drugi od matki. Dwa elementy pary wyglądają podobnie, ale nie są zupełnie identyczne. U kobiet każda z 23 par chromosomów składa się z dwóch podobnych do siebie elementów gdy tymczasem u mężczyzn jedna para – ta która determinuje płeć – jest wyraźnie zróżnicowana. Podczas gdy osoba płci żeńskiej ma dwa chromosomy w kształcie X, osobnik płci męskiej ma jeden chromosom X, a drugi haczykowaty Y. Ta niewielka różnica w budowie komórki decyduje, czy dziecko będzie chłopcem, czy dziewczynką. Sposób zapisu informacji genetycznej w cząsteczkach DNA w chromosomach, polegający na trójkowej sekwencji nukleotydów nazywamy kodem genetycznym. Geny ułożone są w chromosomie liniowo, każdy gen ma swoje ustalone miejsce, nazywane locus. Łączenie się chromosomów w pary ma najważniejsze znaczenie w przekazywaniu cech dziedzicznych, ponieważ każda para zawiera podobne geny, a najprostsze przejawy dziedziczności można powiązać z pojedynczymi parami genów. Geny stanowiące materiał chromosomalny, zbudowane są z kwasu dezoksyrybonukleinowego (DNA) z kwasu rybonukleinowego (RNA) i w mniejszym stopniu z innych białek, występują w dwóch rodzajach: rozróżniamy geny dominujące i recesywne. Zazwyczaj działanie genów dominujących wykazuje tendencje do ujawniania się w fizycznym wyglądzie danej osoby, nawet jeśli występuje pojedynczo. Jeśli geny recesywne mają się ujawnić, muszą występować w parze – po jednym przekazanym przez każdego z rodziców.

Read More Click »

*** Genetyka Nauka o Dziedziczności ***

Genetyka, czyli nauka o dziedziczności, jako odrębna dziedzina biologii ukształtowała się w początkach XX stulecia. Wśród uczonych, zwłaszcza biologów, żywo dyskutowane było zjawisko dziedziczności, tj. przekazywania określonych cech potomstwu poprzez komórki rozrodcze rodziców. Wówczas jednak wiedza z zakresu genetyki nie była jeszcze zbyt głęboka i tym samym nie pozwalała na rozwiązanie wielu problemów praktycznych. W  miarę rozwoju badań naukowych nad zagadnieniem dziedziczności, prowadzonych z  zastosowaniem bardzo różnych metod, ugruntowała swe podstawy genetyka współczesna. Jej narzędzia badawcze dają możliwość dokładnego określenia informacji genetycznej, wyznaczającej właściwości potomstwa. Dzięki temu wiadomo, gdzie w komórce informacja taka jest umieszczona, w jaki sposób zapisuje się ją i odczytuje, jak jest przekazywana z pokolenia na pokolenie i jakim zmianom może podlegać. Informacja genetyczna zawarta jest w komórkach rozrodczych organizmu i wraz z jego dalszym rozwojem następuje jej modyfikacja.
Liczne badania laboratoryjne nad strukturą i zachowaniem się genów przyniosły interesujące wyniki. Najbardziej rewelacyjne okazały się te, które dotyczyły działania genów pochodzących z jednych organizmów w komórkach innych organizmów. Techniką przenoszenia genów z jednego organizmu do drugiego zajmuje się inżynieria genetyczna, zwana też biotechnologią. Termin taki utrwalił się w nauce w ostatniej dekadzie XX stulecia, kiedy to odkryto znaczne korzyści płynące z praktycznego zastosowania inżynierii genetycznej. Stwierdzono, iż wiedza z tej dziedziny może być wykorzystywana przede wszystkim do rozwoju medycyny, mikrobiologii przemysłowej, rolnictwa (w zakresie uprawy nowych gatunków roślin) oraz hodowli zwierząt.
Początki biotechnologii sięgają zamierzchłych czasów. Wszak już około 10-12 tys. lat temu na terytorium Mezopotamii udomowiono niektóre zwierzęta (psa, kozy, owce), nieco później – kota, świnie, bawoły i krowy. Rozpoczęto już wtedy także uprawę niektórych roślin: pszenicy (w Kanaan), ziemniaków i fasoli (w Peru), ryżu (w Indochinach), trzciny cukrowej (w Nowej Gwinei). Z zastosowaniem drożdży przygotowywano napój podobny do piwa (4 tys. lat temu Sumerowie wytwarzali wiele gatunków tego napoju).
Ta tradycyjna (przednaukowa) biotechnologia różni się zdecydowanie od współczesnej inżynierii genetycznej. Jeśli bowiem nawet krzyżowano osobniki różnych gatunków, to zawsze były to gatunki blisko ze sobą spokrewnione (np. wynikiem międzygatunkowej krzyżówki konia i osła stał się muł). We współczesnej inżynierii genetycznej nie ma ograniczeń w przenoszeniu genów z jednych organizmów na inne (można np. wprowadzić świniom geny ludzkie lub geny bakterii – roślinom). Zmiany zachodzące w tradycyjnej biotechnologii były bardzo powolne i trwały latami (np. powstawanie ras psów). Dotyczyły stosunkowo niewielkiej liczby gatunków, głównie roślin uprawnych i zwierząt hodowlanych. Metody zaś współczesnej inżynierii genetycznej są znacznie szersze i szybsze. Podejmowane są np. próby uzyskania zarówno mikroorganizmów, jak i wielokomórkowych roślin i zwierząt wytwarzających substancje potrzebne człowiekowi. Planuje się wprowadzenie zmian w gatunkach organizmów, które potem będą mogły zostać wykorzystane np. w oczyszczalniach ścieków lub w produkcji leków (chodzi o szczepy drobnoustrojów). Inżynieria genetyczna bowiem polega na bezpośrednim, świadomym, ukierunkowanym zmienianiu materiału genetycznego organizmów, zawartego w chromosomach (kwas nukleinowy – DNA).
Zastosowanie osiągnięć inżynierii genetycznej w medycynie uwidacznia się na różnych płaszczyznach. Przede wszystkim rozwija się system poradnictwa genetycznego. Wiadomo bowiem, że wiele chorób i patologii organicznych u ludzi ma podłoże rodzinne – dziedziczne. Skutkom niektórych spośród nich można zapobiegać – np. przez zastosowanie odpowiedniej diety (w przypadku fenyloketonurii lub galaktozemii) czy np. doraźnie (przez dożylne podanie leku powodującego krzepnięcie krwi – osobom chorym na hemofilię). Osoby zagrożone chorobą dziedziczną mogą uzyskać w poradniach niezbędne na ten temat informacje.
Read More Click »

*** Hormony i Gruczoły ***

Gigantyzm – był już znany od zarania historii ludzkości ale do 1860 roku nigdy nie kojarzono go z nadczynnością przysadki mózgowej. Pierwszym hormonem wykrytym w przysadce mózgowej był właśnie hormon wzrostu, otrzymany w stanie czystym z przysadek wołu w 1944roku. Hormon ten reguluje ogólny wzrost ciała , a specjalnie kości długich przy nadczynności zaś przysadki w czasie wzrostu- organizm powoduje przyspieszenie wszystkich procesów wzrostowych, w wyniku czego osobnik osiąga olbrzymie rozmiary z zachowaniem jednak właściwych proporcji ciała. Niedoczynność przysadki mózgowej w okresie wzrostu powoduje karłowatość. Nadczynność przysadki występująca po okresie wzrostu wywołuje tzw. akromegalię. Ponieważ większa część ciała zatraciła już zdolność do dalszego wzrostu, mogą rozrastać się jedynie dłonie, stopy i kości twarzy, wskutek czego ręce i i stopy wyolbrzymiają się nienormalnie i stają się długie i szerokie, a łuki brwiowe i kości policzkowe poszerzają się nadając twarzy ciężki, nieprzyjemny, akromegaliczny wygląd.
Niedobór hormonu wzrostu zwiększa wrażliwość organizmu na insulinę tak że odpowiednia dawka insulina powoduje większe niż zazwyczaj obniżenie się stężenia glukozy we krwi. Hormon wzrostu obniża również stężenie mocznika i aminokwasów we krwi, co jest odbiciem zwiększonego zużycia aminokwasów we krwi, co jest odbiciem zwiększonego zużycia aminokwasów do syntezy białka. Hormon wzrostu zmniejsza intensywność przemiany azotowej aminokwasów w mocznik. Pobudza on mobilizację tłuszczu tkanki tłuszczowej i powoduje wzrost stężenia kwasów tłuszczowych w osoczu. Skutki działania hormonu wzrostowego są w wielu przypadkach przeciwstawne efektom działania insuliny. Wiele efektów działania hormonu wzrostu podlega wpływowi somatomedyny, stabilnego, obojętnego peptydu, syntetyzowanego w wątrobie.

Rola gruczołów dokrewnych w regulowaniu czynności fizjologicznych organizmu.
Bardziej złożonym modelem czynności układu dokrewnego będzie taki model w którym dwa hormony współdziałają w kontrolowaniu niektórych czynności fizjologicznych. Ilość glukozy w krwi jest np. regulowana przez dwa hormony insulinę i glukagon.

Po spożyciu posiłku bogatego w węglowodany lub po dożylnym wstrzyknięciu glukozy stężenie jej we krwi wzrasta. Część glukozy zostaje podebrana przez wątrobę, gdzie jest magazynowana w postaci glikogenu. Wzrost stężenia glukozy w krwi jest jednocześnie sygnałem do wydzielania insuliny. Wzrost stężenia glukozy we krwi zaledwie o kilka miligramów w 100 cm3 wyzwala wydzielania insuliny w ciągu 60 sekund. Uwolnienie insuliny może być również spowodowane przez glukagon ale pewne aminokwasy takie jak leucyna i arginina. Hormony wydzielane przez przewód pokarmowy – sekretyna i pankreozymina- mogą także pobudzać uwolnienie insuliny jak również enzymów trzustkowych. Kiedy komórki zostaną pobudzone przez glukozę, następuje gwałtowne uwalnianie insuliny, następnie szybkość uwalniania zmniejsza się, aby wzrosnąć ponownie. Na podstawie tych obserwacji przypuszcza się, że w trzustce istnieją dwie pule insuliny, jedna do natychmiastowego użycia, a druga służąca jako rezerwa. Głównym efektem działania insuliny jest gwałtowne wzmożenie transportu glukozy do mięśni szkieletowych i tkanki tłuszczowej. Prowadzi to do zmniejszenia stężenia glukozy we krwi.
Wydzielanie glukagonu przez komórki, trzustki jest również regulowane stężeniem glukozy we krwi. Wysokie stężenie glukozy hamuje – a niskie pobudza – wydzielanie tego hormonu. Dlatego jeżeli stężenie glukozy spadnie poniżej poziomu optymalnego, zaczyna się wydzielanie glukagonu. Glukagon aktywując w wątrobie układ fosforylazy glikogenu pobudza przemianę glikogenu w glukozo-1-fosforan w wolną glukozę, która zostaje uwolniona do krwiobiegu. W wyniku tych procesów następuje normalizacja poziomu glukozy we krwi.

Innym przykładem podobnie działającym układu kontrolującego jest regulacja stężenia wapnia we krwi przez parathormon i kalcytoninę. Parathormon wydzielany przez przytarczyce, powoduje uwalnianie wapnia z kości i zębów i wzrost jest stężenia we krwi. Parathormon jest wydzielany w odpowiedzi na zmniejszenie się stężenia wapnia we krwi i powodując rozpuszczanie składników mineralnych kości uwalnia wapń ( i fosforany) a tym samym zwiększa stężenie wapnia we krwi. Gruczoły przytarczyc wyczuwają w jakiś sposób stężenie jego poziomu w omywającej go krwi i reagują na obniżenie jego poziomu uwalnianiem hormonu przytarczycy. Działając rozpuszczająco na składnik mineralny kości parathormon powoduje uwalniania wapnia i fosforanów co doprowadza do wzrostu stężenia wapnia we krwi. Kalcytonina jest wydzielana przez komórki pęcherzykowe tarczycy w odpowiedzi na zwiększenie stężenia wapnia we krwi. Hormon ten pobudza proces odkładania fosforanu wapnia w kościach. Tak zatem kalcytonina reguluje górny poziom stężenia wapnia we krwi, a parathormon poziom dolny.

Read More Click »

Poprzednie Tematy »

  • Page 1 of 2
  • 1
  • 2
  • >